December 2016
From charlesreid1
O NOES!!!
|
Contents
Projects
Projects for the month of December:
- Empirical model building - Github repository containing Jupyter notebooks illustrating various experimental design strategies
- Rejoyce - Github repository containing Jupyter notebooks applying the Natural Language Toolkit to James Joyce's Ulysses
- Website: https://charlesreid1.github.io/rejoyce
- Repository: https://github.com/charlesreid1/rejoyce
- California Crime Stats - Github repository containing Jupyter notebooks applying various statistical tools to analyzing California crime data
- Repository: https://github.com/charlesreid1/cali-crime
- Kaggle Notebook: Cleaning Up the Crime Scene: Parsing the Data https://www.kaggle.com/csc142/d/fbi-us/california-crime/cleaning-up-the-crime-scene-parsing-the-data
- Kaggle Notebook: California Crime Compendium: Comparing Campuses https://www.kaggle.com/csc142/d/fbi-us/california-crime/california-crime-compendium-comparing-campuses
- Abalone Baloney - Github repository containing Jupyter notebooks applying machine learning techniques to an abalone (sea snail) data set from the UCI machine learning repository
- Repository: https://github.com/charlesreid1/abalone-baloney
References
UW Machine Learning Courses
ML Foundations: Case Study Approach https://www.coursera.org/learn/ml-foundations
ML Regression: https://www.coursera.org/learn/ml-regression
ML Classificaiton: https://www.coursera.org/learn/ml-classification
Predictive Analytics Models: https://www.coursera.org/learn/predictive-analytics
Scikit Learn
Examples
Scikit learn examples: http://scikit-learn.org/stable/auto_examples/index.html
Scikit learn map of algorithms: http://scikit-learn.org/dev/tutorial/machine_learning_map/index.html
Scikit learn SVR example: http://scikit-learn.sourceforge.net/0.6/auto_examples/svm/plot_svm_regression.html
Scikit learn more about SVR: http://scikit-learn.org/stable/modules/svm.html
Feature selection (picking out the high-variance variables): http://scikit-learn.org/stable/modules/feature_selection.html#l1-feature-selection
F regression: http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_regression.html
Gaussian Process Model regression: http://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_noisy_targets.html
Datasets
Abalone data set (UCI ML repo): http://archive.ics.uci.edu/ml/datasets/abalone
References
Tutorial on support vector regression: http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=C72B60C38C905614709A0C30D973E2CB?doi=10.1.1.114.4288&rep=rep1&type=pdf
Bioinformatics
Bioinformatics course from David Page: https://www.biostat.wisc.edu/bmi576/
David Page: http://pages.cs.wisc.edu/~dpage/
E. coli genome project: https://www.genome.wisc.edu/
Machine Learning
Tombone's computer vision blog: http://www.computervisionblog.com/
Extended mean field restricted boltzmann machine: https://github.com/charlesmartin14/emf-rbm
Books
Wiley Classics library: https://www.librarything.com/series/Wiley+Classics+Library