Back to Five Fives
Various ways of arranging a single 5 to yield different numbers. (More limited than 4, of course...)
5 1 2 = 5 {\displaystyle 5^{\frac {1}{2}}={\sqrt {5}}}
5 = 5 {\displaystyle 5=5}
120 = 5 ! {\displaystyle 120=5!}
0 = ln 5 5 {\displaystyle 0=\ln {\dfrac {5}{5}}}
1 = 5 5 {\displaystyle 1={\dfrac {5}{5}}}
2 = ln ( 5 ) ln ( 5 ) {\displaystyle 2={\dfrac {\ln {(5)}}{\ln {({\sqrt {5}})}}}}
4 = ln 5 ln ( 5 ) {\displaystyle 4={\dfrac {\ln {5}}{\ln {\left({\sqrt {\sqrt {5}}}\right)}}}}
5 = 5 × 5 {\displaystyle 5={\sqrt {5\times 5}}}
10 = 5 + 5 {\displaystyle 10=5+5}
11 = ϕ 5 − 1 ϕ 5 {\displaystyle 11=\phi ^{5}-{\dfrac {1}{\phi ^{5}}}}
24 = 5 ! 5 {\displaystyle 24={\dfrac {5!}{5}}}
25 = 5 × 5 {\displaystyle 25=5\times 5}
55 {\displaystyle 55}
115 = 5 ! − 5 {\displaystyle 115=5!-5}
125 = 5 ! + 5 {\displaystyle 125=5!+5}
600 = 5 × 5 ! {\displaystyle 600=5\times 5!}
3125 = 5 5 {\displaystyle 3125=5^{5}}
12696403353658275925965100847566516959580321051449436762275840000000000000 = 55 ! {\displaystyle 12696403353658275925965100847566516959580321051449436762275840000000000000=55!}
1 2 = ln ( 5 5 ) ln ( 5 ) {\displaystyle {\dfrac {1}{2}}={\dfrac {\ln {\left({\dfrac {5}{\sqrt {5}}}\right)}}{\ln {(5)}}}}
25 24 = 5 ! + 5 5 ! {\displaystyle {\dfrac {25}{24}}={\dfrac {5!+5}{5!}}}
1 = 5 × 5 5 {\displaystyle 1={\dfrac {\sqrt {5\times 5}}{5}}}
2 = ln ( 5 ) ln ( 5 5 ) {\displaystyle 2={\dfrac {\ln {(5)}}{\ln {\left({\dfrac {5}{\sqrt {5}}}\right)}}}}
3 = log 5 ( 5 ! + 5 ) {\displaystyle 3=\log _{5}{(5!+5)}}
4 = 5 − 5 5 {\displaystyle 4=5-{\dfrac {5}{5}}}
5 = 5 − 5 + 5 {\displaystyle 5=5-5+5}
5 = 5 5 5 {\displaystyle 5={\sqrt[{5}]{5^{5}}}}
5 = 5 5 5 {\displaystyle 5={\sqrt {\dfrac {\sqrt {5^{5}}}{\sqrt {5}}}}}
5 = 5 × 5 5 {\displaystyle 5={\dfrac {5\times 5}{5}}}
6 = 5 + 5 5 {\displaystyle 6=5+{\dfrac {5}{5}}}
10 = 5 ( 5 + 5 ) {\displaystyle 10={\sqrt {5}}\left({\sqrt {5}}+{\sqrt {5}}\right)}
11 = 55 5 {\displaystyle 11={\dfrac {55}{5}}}
12 = 5 ! 5 + 5 {\displaystyle 12={\dfrac {5!}{5+5}}}
15 = 5 + 5 + 5 {\displaystyle 15=5+5+5}
16 = ϕ 5 − 1 ϕ 5 + 5 {\displaystyle 16=\phi ^{5}-{\dfrac {1}{\phi ^{5}}}+5}
20 = 5 × 5 − 5 {\displaystyle 20=5\times 5-5}
20 = 5 lg 5 lg ( 5 ) {\displaystyle 20={\dfrac {5\lg {5}}{\lg {\left({\sqrt {\sqrt {5}}}\right)}}}}
30 = 5 × 5 + 5 {\displaystyle 30=5\times 5+5}
32 = ( ln 5 ln 5 ) 5 {\displaystyle 32=\left({\dfrac {\ln {5}}{\ln {\sqrt {5}}}}\right)^{5}}
25 = 5 5 5 {\displaystyle 25={\dfrac {\sqrt {5^{5}}}{\sqrt {5}}}}
60 = 5 ! ( ln 5 ln 5 ) {\displaystyle 60={\dfrac {5!}{\left({\dfrac {\ln {5}}{\ln {\sqrt {5}}}}\right)}}}
95 = 5 ! − 5 × 5 {\displaystyle 95=5!-5\times 5}
130 = 5 ! + 5 + 5 {\displaystyle 130=5!+5+5}
145 = 5 ! + 5 × 5 {\displaystyle 145=5!+5\times 5}
625 = 5 5 5 {\displaystyle 625={\dfrac {5^{5}}{5}}}
1024 = ( ln 5 ln 5 ) 5 {\displaystyle 1024=\left({\dfrac {\ln {5}}{\ln {\sqrt {\sqrt {5}}}}}\right)^{5}}
503284375 = 55 5 {\displaystyle 503284375=55^{5}}
1 = ln ( 5 5 ) + ln 5 ln 5 {\displaystyle 1={\dfrac {\ln {\left({\dfrac {5}{\sqrt {5}}}\right)}+\ln {5}}{\ln {5}}}}
1 = 5 5 5 5 {\displaystyle 1={\dfrac {5^{5}}{5^{5}}}}
1 = 5 × 5 5 × 5 {\displaystyle 1={\dfrac {5\times 5}{5\times 5}}}
6 = ln ( 5 ) ln ( 5 ) + ln ( 5 ) ln ( 5 ) {\displaystyle 6={\dfrac {\ln {(5)}}{\ln {({\sqrt {5}})}}}+{\dfrac {\ln {(5)}}{\ln {({\sqrt {\sqrt {5}}})}}}}
7 = 5 ! 5 + ( 5 × 5 ) {\displaystyle 7={\sqrt {{\dfrac {5!}{5}}+(5\times 5)}}}
8 = ( ln ( 5 ) ln ( 5 ) ) ( ln ( 5 ) ln ( 5 ) ) {\displaystyle 8=\left({\dfrac {\ln {(5)}}{\ln {({\sqrt {5}})}}}\right)\left({\dfrac {\ln {(5)}}{\ln {({\sqrt {\sqrt {5}}})}}}\right)}
9 = 5 + 5 − 5 5 {\displaystyle 9=5+5-{\dfrac {5}{5}}}
11 = 5 + 5 + 5 5 {\displaystyle 11=5+5+{\dfrac {5}{5}}}
12 = ( 5 ! 5 ) × ( ln 5 ln 5 ) {\displaystyle 12=\left({\dfrac {5!}{5}}\right)\times \left({\dfrac {\ln {\sqrt {5}}}{\ln {5}}}\right)}
13 = 5 ! − 55 5 {\displaystyle 13={\dfrac {5!-55}{5}}}
15 = ( log 5 ( 5 ! + 5 ) 5 ) {\displaystyle 15=\left(\log _{5}{(5!+5)^{5}}\right)}
20 = 5 + 5 + 5 + 5 {\displaystyle 20=5+5+5+5}
26 = 5 5 − 5 5 ! {\displaystyle 26={\dfrac {5^{5}-5}{5!}}}
35 = 55 + 5 ! 5 {\displaystyle 35={\dfrac {55+5!}{5}}}
35 = 5 × 5 + 5 + 5 {\displaystyle 35=5\times 5+5+5}
49 = 5 ! 5 + ( 5 × 5 ) {\displaystyle 49={\dfrac {5!}{5}}+(5\times 5)}
50 = 5 × 5 + 5 × 5 {\displaystyle 50=5\times 5+5\times 5}
60 = 5 ( 5 ! 5 + 5 ) {\displaystyle 60=5\left({\dfrac {5!}{5+5}}\right)}
70 = 5 ! + 5 − 55 {\displaystyle 70=5!+5-55}
120 = 5 × 5 × 5 − 5 {\displaystyle 120=5\times 5\times 5-5}
123 = ϕ 5 + 5 + 1 ϕ 5 + 5 {\displaystyle 123=\phi ^{5+5}+{\dfrac {1}{\phi ^{5+5}}}}
130 = 5 × 5 × 5 + 5 {\displaystyle 130=5\times 5\times 5+5}
243 = ( log 5 ( 5 ! + 5 ) ) 5 {\displaystyle 243=\left(\log _{5}{(5!+5)}\right)^{5}}
( 5 5 ) ! = ( 10 5 ) ! = 440 5 = 120 10 {\displaystyle (5_{5})!=(10_{5})!=440_{5}=120_{10}}
(5 base 5 is 10 base 5; 5 base 5 factorial is 440 base 5, or 120 base 10. No surprises here.)
505 = 5 5 5 − 5 ! {\displaystyle 505={\dfrac {5^{5}}{5}}-5!}
3025 = 55 × 55 {\displaystyle 3025=55\times 55}
3125 = 5 × 5 5 5 {\displaystyle 3125={\dfrac {5\times 5^{5}}{5}}}
161051 = 11 5 = ( 55 5 ) 5 {\displaystyle 161051=11^{5}=\left({\dfrac {55}{5}}\right)^{5}}