From charlesreid1

Author: Jerry Hill

Year: 2005

Title: Kentucky Weather


This is a relatively recent book by Jerry Hill - Kentucky Weather

Tornado Map

Map of tornado data (Pulaski, KY is the one with 16, inverted V top)

Kentucky Weather Tornado Map.png


A review of accounts indicates that tornadoes can occur in almost any section of the state and in any terrain, hilltop or valley bottom. In general, the greatest number occur in the western and northern sections, the fewest in the eastern. About 80% of all Kentucky tornadoes approach from the west–southwest. And, during the average year, tornadoes are reported at widely scattered locations across the state.

It is an interesting coincidence that the first white man to record his explorations in Kentucky encountered a tornado-like storm. Dr. Thomas Walker led a party from Virginia into Kentucky in 1750. They came through the Cumberland Gap, explored that eastern section of Kentucky, and then crossed the Big Sandy River to return home across what is now central West Virginia. When the party was in the vicinity of Salyersville or Paintsville on June 4, they survived a violent storm. Walker recorded the event in his diary:

"Got to Falling creek and went up it till 5 in the afternoon, when a very black cloud appearing, we turn’d out our horses, got tent poles up, and were just stretching a tent, when it began to rain and hail, and was succeeded by a violent wind which blew down our tent and a great many trees around it, several large ones within 30 yards of the tent. We all left the place in confusion and ran different ways for shelter. After the storm was over, we met at the tent, and found all safe."

The next day Walker commented in his diary: “This morning we went up the creek about 3 miles, and then were obliged to leave it, the timber being so blown down that we could not get through.” The problems caused by the storm plagued the party even a week later when they were near the Big Sandy River. On June 10, Walker wrote: “Being in very bad ground for our horses, we concluded to move. We were very much hindered by the trees that had blown down on Monday last.”

Several years later, reference was made to another tornado in Kentucky. In the late winter of 1778–79, George Rogers Clark led a party to Vincennes to assault the English outpost where the British were encouraging the Indians to attack frontier settlements. They captured Lord Henry Hamilton, known as the “hair buyer” because of the bounty that he had placed on white men’s scalps. Hamilton kept a meticulous diary while he was being transported via an oak boat down the Wabash River and up the Ohio to Louisville. On March 27, when he and his captors were about 2 days below Louisville, near the present site of Brandenburg, Hamilton noted:

I landed with Major Hay and Mr. Bellefeuille on the east side of the river to get a view of the ravages occasioned by a whirlwind or hurricane — we had some difficulty in scrambling to the top of the cliff, great craggs and large trees tumbled together in confusion obliging us sometimes to creep and sometimes to climb — when we got to the top we saw the progress of this vein of wind which was in a straight line across the River, and thro the wood which was mowed downed at about 20 or 25 feet from the ground, the vista opened being as regular as if laid down by a line.

One hundred ninety-five years later, almost to the day, a tornado touched down on April 3, 1974, in Breckinridge County, very near the same location, and killed thirty-one people at Brandenburg before crossing the Ohio River into Indiana.

One of the best examples of the influence of climate on development is the state’s bourbon whiskey industry. Bourbon whiskey, which is sold worldwide, is produced almost exclusively in Kentucky. The production method involves the distilled whiskey being placed into charred oak casks to age for several years in unheated warehouses, and distillers sometimes claim that essential to any good bourbon is its expansion and contraction inside the barrel. Kentucky’s occasionally extreme summer heat expands the aging whiskey, pressing it into the charred oak of the cask, adding taste and color, and its occasionally frigid temperatures shrink the spirit, drawing it back out of the wood. As this cycle is repeated over several years, the product develops its unique characteristics.

The ample rainfall and moderate temperatures normally found in Kentucky have been ideal for the development of the state’s agriculture industry. Most field crops grow best at temperatures between 60 F and 85 F, a range especially favorable for two of Kentucky’s major plantings, corn and tobacco. In addition, the state’s dependable late winter, early spring rainfall is stored in the soil, providing a bit of insurance against dryness in the summer growing season. That moisture is adequate in most years means that, unlike their counterparts in the Great Plains and dry western states, few Kentucky farmers need expensive irrigation systems.

Once farmers have their crops in the ground and growing well past midseason, their thoughts turn from water to frost. An early frost can kill a crop before it reaches maturity, and nothing is more distressing to Kentucky farmers than a field of tobacco hit by an early freeze. It turns as black as their hatbands and is worth about as much. The length of the freeze-free season in a region determines which crops can be profitably grown there. For example, the shortness of the growing season has prevented widespread cotton production in Kentucky. King cotton made millionaires of some Southern growers in just a few seasons during the early nineteenth century, and its production spread into the southern and western portions of Kentucky. Kentucky farmers at one time tried to grow cotton as far north and east as Campbellsville, but the average freeze-free season there is about 20 days shorter than the 200 days normally required to produce a cotton crop.

The crop that established the backbone of Kentucky’s agriculture industry was tobacco, which does not require the long growing season that cotton does. The early settlers who came from Virginia and the Carolinas brought with them a knowledge of tobacco production, and they found the fertile soils well suited to tobacco’s high nitrogen requirement. As soon as they had planted their corn crop—which by law they had to do in order to establish a claim to their homesteads—these early Kentuckians wasted no time in producing tobacco. The first boatload of tobacco was taken downriver to be sold in New Orleans in 1787.

The predominant type of tobacco grown in Kentucky is burley. Burley alone accounted for $518 million of the approximately $1.7 billion in crops produced statewide in 2000, and it constitutes about a third of tobacco production nationwide. Burley imparts lavor to tobacco products, and Kentucky produces some of the most desirable leaf in the country. Unfortunately for growers, it is sensitive to the weather because it is air cured. What this means is that, even after growers have harvested their burley, they are still far from the high-quality leaf desired at market and still at the mercy of the weather.

Kentucky is a leading producer of burley tobacco because it has the unique combination of soils and climate needed to give the burley the desirable quality. The most critical weather conditions occur during the curing period since they influence the chemical changes taking place—changes that ultimately produce the characteristic color, taste, and aroma of burley. The leaf alternately becomes soft and pliable during the damp mornings, then dry and brittle as the humidity drops in the afternoon. Farmers speak of tobacco coming in and out of case. The humidity in the curing barn must reach a level over 90% for the leaf to come into case and drop below 50% for it to go out of case. Each time the leaf goes in and out of case, it progresses further toward the finished tan product.

Gulf Coast and eastern seaboard states, where the humidity stays high in the afternoon, cannot produce a cured leaf of high quality. The weather there is too damp and, therefore, favors the development of mold, which farmers call houseburn, a problem that can substantially reduce the weight of the crop as well as its quality. Similarly, drier regions that do not have dependably high morning humidity cannot produce a successful cure either. The predictable product there would be a leaf with green or yellow mottling.

One particularly important feature of the climate of Kentucky is that it provides the state’s farmers with opportunities to produce multiple crops in the same field in the same year, a practice not normally possible in more northerly regions. For example, wheat or barley can be harvested in June or early July, and there is usually enough of the growing season left to plant a crop of soybeans in the stubble. The yield from late-planted soybeans is usually less than that from those that have grown a full season, but production is still adequate to be profitable. This particular double-cropping practice has been made possible by the development of new, small grain varieties that reach maturity earlier than do older varieties.

Even before the development of the state park system, however, Kentucky’s climate lured vacationers. Beginning very early in the nineteenth century, resort hotels were built at many of the state’s mineral springs, some large enough to accommodate as many as a thousand guests at a time. These spas often attracted Southerners, who would pack up their families and head north to escape the disease that was then endemic to the lower Mississippi Valley and the Gulf Coast states during the hot summer months and take advantage of the supposed curative power of mineral springs. To get to Kentucky, Southerners would usually travel by steamboat to Louisville, where they transferred to smaller packets for the trip up the Kentucky River. Daytime activities at the spas included tenpins, croquet, riding, “taking the waters”—and napping during the hottest part of the afternoon. Nighttime meant dancing and taking a stroll in the cool air.

The rivers that brought the Southern planters and their families to the spas also served as avenues for trade, development, and settlement. Kentucky’s rivers first saw the rough rafts and keelboats of the early settlers, then the grand steamboats. In the early days before locks and dams made year-round navigation possible, the Ohio River rose and fell with the rains. By the early 1800s, many of the supplies and much of the news coming from the East traveled down the Ohio from Pittsburgh to Maysville, the gateway to the Bluegrass region; to Cincinnati; and to Louisville. It was not uncommon for the Kentucky Gazette, published in Lexington, to comment in late summer or fall that there was no news because a spell of dry weather had brought the river to a stage too low to be navigable.

Travel on the Ohio was also restricted in the winter because of its tendency to freeze over. Richard H. Collins’s History of Kentucky, published in 1874, contains the following account:

"For ten days previous to Tuesday, December 20, 1796, the Ohio River had been frozen over to the depth of 9 inches, enclosing firmly the “Kentucky boats” of quite a number of emigrants. Heavy rains fell, inspiring them with hopes of release and of a prosperous journey; but the weather turned colder, and on that night, and the next, the thermometer stood at 17 below zero. Before daylight, on the 22nd, the ice bridge (probably an ice dam) broke up with a noise like thunder, carrying to destruction many of the boats, and to death some of their adventurous passengers."

The winter ice on the Ohio River must have been a greater threat to life than either the Indians, disease, or the privations of a frontier existence. The Kentucky Gazette carried this note on January 15, 1805, from Limestone, now known as Maysville: “13 boats lost on the Ohio River near Limestone by the ice.” On February 5, we find this elaboration: “Accounts from the Ohio River represent the destruction of boats and lots of property by the ice as being very considerable. It is said that upwards of 200 crafts of various descriptions have passed the mouth of Kentucky in the cakes of ice; some of them having persons on board frozen to death.” And, on February 15, the editor reported that, after the ice had finally broken on February 10, he saw descending amid the flows eight flatboats, four keelboats, ten ferryboats, sixty to eighty canoes, and one house.

Singular weather events have also had significant effects on Kentucky history. Consider, for example, the September 1778 siege of Fort Boonesboro, on the Kentucky River. The Indian chief Black Fish and four hundred warriors had attacked the fort on September 11, hoping to destroy the settlement and take prisoners back to Ohio. The settlers, under the leadership of Daniel Boone, who could muster only fifty able riflemen, faced certain defeat. After an opening skirmish, the Indians laid siege to the fort and, under the cover of gunfire, began tunneling toward it from the protection of the riverbank. But the sound of digging could be heard over the gunfire, and, hoping to intercept the Indians, Boone ordered the settlers to begin tunneling out of the fort. After seven days, the Indians intensified their attack and succeeded in setting ablaze the cabin roofs inside the fort. Water supplies were too limited for the settlers to do anything but watch in horror as the flames spread throughout the fort. Their last defense was about to collapse, and they awaited the Indians’ final assault.

And then, miraculously, rain began to fall. The rain fell all night, putting out the fires, and continued the next day, increasing in intensity until the battlefield was hidden from view. That night, the settlers went to bed soaked and with little hope of seeing the next day, but the morning dawned clear and strangely still. The sounds of digging were gone; indeed, the heavy rain had collapsed the Indians’ tunnel, which had come within 20 yards of the fort but now lay swimming in mud. The longest siege in Kentucky history had failed, the victim of an unseasonably heavy rain.

The state’s earliest settlers homesteaded in log cabins, usually one- or two-room structures tightly fortified against Indian marauders. But, as the country grew safer, homes were built in two separate sections connected by a covered breezeway or “dog-trot” — a characteristically Southern style and one more suited to creature comforts. The dogtrot served effectively as an outdoor living room, offering protection from the summer sun but still allowing a cool breeze to pass through. Unlike their compatriots farther north, who designed their homes to keep out the cold, Kentuckians opted for an early form of air-conditioning to enhance their summer comfort.


In Kentucky, only the period between 11:00 a.m. and 1:00 p.m. is considered to be significant on Groundhog Day.

Another traditional method of weather forecasting is to watch the changing signs of nature. Kentuckians seem particularly preoccupied with predicting the severity of the coming winter. They watch animals, plants, insects, and even the moon closely, hoping for insight.

Still, some weather lore does have a basis in fact. The changing appearance of the sky, rising humidity, shifting winds, and falling pressure have for centuries been perceived as signs of a change in the weather, accurate predictors identified long before the science of meteorology was born. According to Ben Franklin, one of this nation’s earliest weather enthusiasts: “Know the signs of the sky, and you will far happier be.”

Common for centuries among seamen has been the saying: “Red sky at morning, sailors take warning. Red sky at night, sailors delight.” Or, as early Kentucky pioneers modified it: “Red sky at morning, travelers take warning. Red sky at night, travelers delight.” Today we know that it is the clear skies that accompany the high-pressure centers moving across the country that cause the sun to appear brilliant red when it is low on the horizon in the morning or evening. A red rising sun is a warning sign because it indicates that a high-pressure center has passed, likely to be followed by a low-pressure center and stormy weather. A red setting sun is a delightful sign because it indicates that the high pressure is still to the west, likely to bring fair weather as it passes.

Then there’s the rhyme about grazing cattle: “Tails to the east— weather’s least. Tails to the west—weather’s best.” And it’s true. Because grazing cattle instinctively turn their tails into an uncomfortable wind, a look across a pasture on a blustery day is as good as a look at a weather vane. Winds circulate counterclockwise around the low-pressure centers that bring stormy, or “least,” weather. Because many of these systems develop in Texas, Oklahoma, or Ar- kansas and create easterly or southeasterly winds across Kentucky, cattle grazing with their tails to the east foretell an oncoming storm. After these low-pressure systems pass over Kentucky, the wind shifts back to the west, bringing a clearing trend. Thus, cattle grazing with their tails to the west foretell an approaching clear spell.

Passing pressure systems give other signs of weather changes. For example, pressure change can produce aches and pains and other physical symptoms in some people. The most common symptom is an aching in broken bones long mended. And that aching can be explained by even slightly falling pressure causing any air trapped in the knitted fracture to expand and press painfully on the bone.

Odors too are common signs of a change in the weather, always seeming more pronounced before a rain. Coal miners, for example, associate the smell of mine gas with oncoming rain or snow— for good reason. Because air moves from high pressure to low, a rapid drop in local atmospheric pressure will cause the air inside the mine to move outward, carrying its distinctive odor with it. In turn, the high pressure associated with fair weather traps the air in the mine, with the result that mine odors are much less readily apparent. The English have a saying about odors that goes: “Drains, ditches, and dunghills are more offensive before rain.”

Humidity rises over the 6–12 hours before a rainstorm, causing characteristic signs to appear. Because certain fibers are sensitive to the moisture in the air, damp, humid weather can bring problems. Human hair becomes unmanageable. Ropes kink and twist. Because farmers do not like to cut their hay only to have it rained on, they look to the behavior of rope for a sign of coming inclement weather: “When ropes twist, forget your haying.” But humidity affects more than just fibers. Cooks feel that humid weather is a bad time to make candy. As the saying goes: “If candy will not get hard, there will be rain.”